1. Importing transformers modules
from transformers import module_name
2. Loading pre-trained models
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
3. Tokenizing text
encoded_input = tokenizer(text, padding=True, truncation=True, max_length=128, return_tensors='pt')
4. Fine-tuning a pre-trained model
from transformers import AdamW, get_scheduler
optimizer = AdamW(model.parameters(), lr=2e-5)
scheduler = get_scheduler("linear", optimizer, num_warmup_steps=100, num_training_steps=1000)
for epoch in range(3):
model.train()
for batch in dataloader:
optimizer.zero_grad()
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
scheduler.step()
5. Saving and loading models
model.save_pretrained(directory_path)
model = AutoModelForSequenceClassification.from_pretrained(directory_path)
6. Generating text with language models
input_text = "Once upon a time"
encoded_input = tokenizer.encode(input_text, return_tensors='pt')
output = model.generate(encoded_input, max_length=50, num_beams=5, early_stopping=True)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
7. Extracting contextual word embeddings
input_text = "Hello, how are you?"
encoded_input = tokenizer(input_text, return_tensors='pt')
output = model(**encoded_input)
embeddings = output.last_hidden_state
8. Fine-tuning with custom datasets
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
9. Using pipelines for easy inference
from transformers import pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer)
results = classifier(["Text 1", "Text 2", "Text 3"])
10. Utilizing model-specific features and configurations
Transformers provides a wide range of models and additional features like token classification, named entity recognition, summarization, translation, etc. Refer to the official documentation and model-specific examples to explore these capabilities.
Conclusion
These tips and tricks should help you get started with the transformers library. For more detailed information and examples, make sure to refer to the official documentation and explore the vast range of functionalities the library offers.
I discovered this phenomenal website a few days ago, they give helpful information to their audience. The site owner has a knack for engaging readers. I’m thrilled and hope they keep providing useful material.
Thanks